SEQ_REVIEW: A Tool for Reviewing and Checking ;

N95- 17561

-y

oy

Spacecraft Sequences
Pierre F. Maldague
Mekki El-Boushi
Thomas J. Starbird
Steven J. Zawacki

Jet Propulsion Laboratory
California Institute of Technology
4800 Oak Grove Drive

Pasadena, CA 91109-8099

ABSTRACT

A key component of JPLs strategy to make
space missions faster, better and cheaper is
the Advanced Multi-Mission Operations Sys-
tem (AMMOS), a ground software intensive
system currently in use and in further develop-
ment. AMMOS intends to eliminate the cost of
re-engineering a ground system for each new
JPL mission. This paper discusses SEQ_RE-
VIEW, a component of AMMOS that was
designed to facilitate and automate the task of
reviewing and checking spacecraft
sequences.

SEQ_REVIEW is a smart browser for inspect-
ing files created by other sequence generation
tools in the AMMOS system. It can parse
sequence-related files according to a com-
puter-readable version of a “Software Inter-
face Specification” (SIS), which is a standard
document for defining file formats. It lets users
display one or several linked files and check
simple constraints using a Basic-like “Little
Language”.

SEQ_REVIEW represents the first application
of the Quality Function Deployment (QFD)
method to sequence software development at
JPL. The paper will show how the require-
ments for SEQ_REVIEW were defined and
converted into a design based on object-ori-
ented principles. The process starts with inter-
views of potential users, a small but diverse
group that spans multiple disciplines and “cul-
tures”. It continues with the development of

929

QFD matrices that relate product functions
and characteristics to user-demanded quali-
ties. These matrices are then turned into a for-
mal Software Requirements Document (SRD).
The process concludes with the design phase,
in which the CRC (Class, Responsibility, Col-
laboration) approach was used to convert
requirements into a blueprint for the final prod-
uct.

THE UPLINK PROCESS

The multi-mission environment in which
SEQ_REVIEW is intended to operate is fairly
complex. This Section introduces the basic
elements of the uplink process and explains
where SEQ_REVIEW fits in that process.

Sequence Generation

The ultimate goal of the uplink process is to
allow ground operations personnel to control
the spacecratft by sending it radio signals that
the spacecraft can receive, decode and store
in its memory. The decoded information usu-
ally consists of commands that are to be exe-
cuted in a precise sequence at specified
times. We will refer to these commands as
“spacecraft commands”, and to a set of such
commands sent to the spacecraft as a whole
as an “on-board sequence”.

Much of the uplink process is concerned with
the planning, generation and verification of on-
board sequences. This process can involve
many people: mission scientists interested in
planetary data request new observations ;

Y

5

engineers concerned about the capability,
health and safety of the spacecraft issue
maintenance requests; mission planners try to
accommodate requests into a realistic sched-
ule; sequence engineers translate high-level
requests into detailed instructions that will
cause the spacecraft to perform the required
tasks; and finally, the flight team must check
the detailed sequence against all flight rules,
possibly including rules that were added at the
last minute to compensate for equipment not
operating at specification or software bugs
aboard the spacecratft.

Analogy with Programming

The process just described resembles that of
generating executable code for an ordinary
computer, an analogy that will be used exten-
sively in this paper. The spacecraft and its
sequence are analogous to a microprocessor
and its machine instructions. The process of
planning and generating a sequence is similar
to the task of designing and implementing
software. Just as software engineers would
find it impossible to do their job using machine
code, sequence engineers find it useful to
work not with the on-board sequence itself,
but with a human-readable version of it that is
similar to an assembly language program.

Of course our analogy between a spacecraft
and a microprocessor is not perfect. Modern
spacecraft have considerable processing
power at their disposal, so that spacecraft
commands are usually much more complex
than typical microprocessor instructions. This
complexity is reflected in the large number of
arguments required by many commands. In
spite of this, the analogy between spacecraft
commands and assembly code remains valid
in the sense that spacecraft commands are
expressed in a special-purpose language that
is hard to understand unless one is familiar
with the architecture of the spacecraft.

Translating Requests into Commands:
SEQ _GEN

Programming efficiency can be increased dra-
matically when using a high-level language

instead of assembly code. The tool that makes
this possible is the compiler, which translates
high-level code into assembly code.
Sequence engineers also find that program-
ming sequences directly is prohibitively diffi-
cult, and that time can be saved by expressing
commands as high-level “Requests” instead of
low-level “Commands”. Something similar to a
compiler is now needed to translate the former
into the latter. In the AMMOS system, this role
is assumed by SEQ_GEN, a program that
expands requests into sequences of com-
mands. The figure on the following page
shows the similarities between the conven-
tional code development process and the
uplink process.

Since SEQ_GEN is a multi-mission tool, it
must obtain mission-specific information from
external files. This is unlike most compilers,
which are hard-coded around the syntax of a
specific language. A second difference with
compilers is that SEQ_GEN defines and main-
tains an internal model of the spacecraft. The
mission-specific files required by SEQ_GEN
therefore need to describe the spacecraft
model as well as the basic commands and
their effect on the model. Other mission-spe-
cific files used by SEQ_GEN define high-level
“activity types”, which are analogous to sub-
routines, and flight rules, which are formulated
in terms of the spacecraft model (see Ref. 1
for more details on the operation of SEQ_-
GEN).

SEQ_GEN generates two basic output files.
The first file is the Spacecraft Sequence File,
which is an ASCII representation of the actual
on-board sequence. This file is an input to
another program, SEQ_TRAN, which converts
ASCIl mnemonics into binary code, links the
program, and performs necessary memory
management and packetization tasks. The
second file is the Predicted Event File (PEF),
which shows in time-ordered fashion the com-
plete sequence of commands, ground events,
and optionally the status of the internal space-
craft model that is predicted to result from the
Request File. In the following, we focus on the
PEF.

Compilation rules:
C Programming

Final Product:
Executable Code

Manual

Compilation:

C Compiler

Product Documentation:

High-level source:
C Code

N

Assembler Source
(seldom used),
Compiler Errors
and Warnings

Fig. 1: SOFTWARE DEVELOPMENT PROCESS

Exp.:m_s lon Rules: Final Product:
Actlw%T pes, \ |
Model Definitions, Expansion: On-Board Sequence
Flight Rules

SEQ_GEN

High-level requests: \ Product Documentation:

Request File Predicted Event File

SEQ_REVIEW

Fig. 2: SEQUENCE GENERATION PROCESS

Checking the Sequence: SEQ_REVIEW

Testing conventional software is a straightfor-
ward procedure: the worst that can happen is
that the program “crashes” under the benevo-
lent supervision of the operating system. In
space exploration, however, sequence engi-
neers do not have the luxury of trying again:
the sequence HAS to work the first time. Sim-
ulation tools such as those incorporated into
SEQ_GEN provide valuable help in validating
sequences. However, the final arbiter of a
sequence’s validity is the sequence engineer
and other flight team members who review it.

The main difficulty in checking a sequence is
to zero in on the information that is pertinent to
a single flight rule or constraint. The documen-

931

tation provided by SEQ_GEN in the form of an
event file is quite extensive, but that makes it
hard to read. Traditionally, sequence checkers
have used a variety of ad hoc methods to deal
with this complexity:

- manual inspection of computer printouts

- BASIC and C programs that “strip” event
files of unwanted information

- UNIX “awk” scripts for reformatting event
files

The purpose of SEQ_REVIEW is to offer
sequence engineers and other sequence
reviewers an alternative, multi-mission pack-
age that is easy to use, adapt, port and main-
tain.

THE REQUIREMENTS PHASE

The SEQ_REVIEW software requirements
document (SRD) was based on the TQM tool
Quality Function Deployment (QFD), which we
briefly outline here. A more detailed account of
our QFD approach wiil be found in Ref. 2.

The QFD Approach

The emphasis in the QFD approach is on cus-
tomer requirements and on how to ensure that
these requirements are reflected, i. e.,
“deployed”, through the design process. The
first step in the process as implemented here
was to collect information from potential users
of the software through interviews. Responses
to the interviews were then analyzed by a
Committee with representatives from user,
developer and systems engineering groups.
The primary goal of this first step was to come
up with three basic lists:

- Demanded Qualities, which express
what the user wants to be able to do
with the program. Example: easy to strip
and reformat a PEF. All of these Quali-
ties were taken from user responses.
The Committee organized them into 6
broad categories such as “Sequence
Validation” and “Ease of Use”, and then
into additional sub-categories such as
“find stimuli of violations” and “filter and
re-order fields”.

- Quality Characteristics, which express in
a quantitative manner how users and
developers would rate the SEQ_RE-
VIEW product against other methods for
achieving the same task. Examples:
“check one constraint in at most 5 lines
of SEQ_REVIEW ‘Little Language’
code”; “keep the program to 18,000 or
fewer lines of code”.

- Functions. These are program features
which will allow the product to meet cus-
tomer requirements. Most of these were
requested by users directly (“Perform
time conversion on request”); a few
were provided by developers.

932

A questionnaire was then circulated, asking
users to rank the Demanded Qualities in order
of importance. The responses were used to
compute an average score for each one of the
Demanded Qualities. Listed at the top were:

- “Easy to Strip and Reformat a File”
- “Draw Timelines”

“Reduce the Amount to Read”

- “Allow Annotations”

“Work with Event Files”

Some of the least important Qualities were
“Correlate Event and Request Files” and
“Work with Spacecraft Sequence Files.”
Clearly, our users were mostly interested in
making event files easier to read.

In the next step of our QFD implementation,
these user-assigned priorities were propa-
gated through a set of “correlation matrices”
that relate the users’ Demanded Qualities to
factors that the developers can influence
through their design, primarily Quality Charac-
teristics and Functions. These matrices spec-
ify whether for any given Demanded Quality/
Quality Characteristic or Demanded Quality/
Function pair, the correlation between the two
members of the pair is (i) nonexistent, (ii)
weak, (iii) moderate or (iv) strong.

Based on these matrices, we used a QFD
software package to compute scores for each
Quality Characteristic and for each Function.
These scores were then used to prioritize the
development process as well as the overall
objectives for the product. The highest-priority
items were

- provide users with a rule definition lan-
guage (the “Little Language”)

- provide a graphic interface that lets
users specify a rule in under 5 minutes

- design the “Little Language” so that
users can formulate a rule in 5 state-
ments or less

- adapt existing timeline generation soft-
ware from other programs (such as
SEQ_GEN)

Some of the less important characteristics
were “Ability to add a feature in one week or
less”, and “Keep the code to 18,000 lines or
less”. Clearly, the emphasis was on providing
users with simple ways to express rules and
on providing timeline capabilities without re-
inventing the wheel.

Generating Requirements

Since the QFD methodology does not pre-
scribe a specific method for generating
requirement documents, we had to come up
with our own. Our first attempt consisted in
translating the correlation matrices for Func-
tions and Quality Characteristics into plain
English. The Functions were used primarily to
explain the method used to meet the require-
ments, while the Quality Characteristics were
used primarily to state testable objectives for
the finished product.

This first approach was rejected because the
resulting requirements document was hard to
read. The problem was that our lists of Quali-
ties and Functions did a good job of summa-
rizing user requirements, but did not provide
the reader with much of a feel for the function-
ality of the SEQ_REVIEW product.

Our second, more successful approach was to
realize that the task of stating our require-
ments was going to be a lot simpler if we first
carried out a couple of “pre-design” steps prior
to writing requirements:

(i) design a tentative Graphical User Inter-
face (GUI). This would give us a chance
to organize user-demanded features in
a logical manner. It was also decided to
implement this preliminary design in
Visual BASIC and make it available to
potential users for feedback.

(ii)y show a concrete example of a Little Lan-
guage (LL) and explain how it relates to
the desired functionality of SEQ_RE-
VIEW. This step actually required little
effort since a LL was already developed
as part of the prototyping effort (see the
next Section). While this LL didn’t meet
all the requirements, it is close enough

to provide the reader with a sense of
how the product would operate.

While these tasks delayed the SEQ_REVIEW
SRD somewhat, we felt that the overall sched-
ule would not be adversely impacted. First,
additional up-front work would make design
and implementation easier later on. Second,
our tentative GU! could be turned very easily
into the first Section of the SEQ_REVIEW
User’s Guide, again saving us time later on.
Finally, we felt that making our tentative GUI
available to users early on would contribute
significantly to the ultimate success of
SEQ_REVIEW.

The software requirements for SEQ_REVIEW
were strongly influenced by two paralle! efforts
that took place in the summer of 1993.

Prototyping Activity

First, prototypes were built to demonstrate the
feasibility of SEQ_REVIEW. These proto-
types established a firm basis for the following
concepts:

1. zero in on useful information by letting
the user specify patterns and searches
in a simple, intuitive way

2. translate sequence files into text files
suitable for input into spreadsheet pro-
grams such as Lotus 1-2-3

3. express rules and constraints easily by
writing simple programs in a Little Lan-
guage designed to handle the type of
information found in sequence files

4. reformat sequence files by letting users
specify records of interest and fields of
interest within these records, using
either simple pattern definitions or the
Little Language

5. build on previous experience by saving
search patterns and simple algorithms
so they can be reused in future review
sessions

6. allow the program to read arbitrary
(within reason) text files by specifying
the file format on-fine, as opposed to re-

933
&

compiling a new version of the software
featuring new hard-coded file formats

Second, a Quality Function Deployment
(QFD) Committee was formed. This Commit-
tee included representatives from potential
users of SEQ_REVIEW as well as software
developers. The Committee used the QFD
methodology to identify desired features and
qualities that the SEQ_REVIEW product
should exhibit. How this work was used to
establish the present requirements was
described in the previous paragraphs.

User Interface

Since the primary purpose of SEQ_REVIEW
is to display sequence file information to the
user, it is anticipated that most users will want
to interact with the program through a
Graphical User Interface (GUI) similar to that
used by many text editors. This should be
qualified in two ways:

- asmall but significant minority of poten-
tial SEQ_REVIEW users requested the
ability to control the program through a
command-line interface, as opposed to
clicking on buttons and pull-down
menus;

- SEQ_REVIEW needs to support “batch-
mode” operation, in which a pre-defined
set of commands is fed to the program
from a command file. In this mode,
SEQ_REVIEW acts as a “filter”, e. g. to
identify violations of rules not yet imple-
mented in SEQ_GEN.

To accommodate these requirements,
SEQ_REVIEW will be provided in two forms:
interactive and batch. The interactive version
will be GUl-based. In addition to the usual
menu bar and push-button, the GUI will fea-
ture a special window for command-line input.
Every SEQ_REVIEW function will be accessi-
ble as a command line as well as through
menu selections. “Menu accelerators” will also
be provided; these are short, user-definable
keystroke combinations that can be used as a
substitute for menu selections.

The batch version of SEQ_REVIEW will not

display anything to the user and will accept
commands from “standard input”, which can
be either the user’s keyboard or a text file
specified to UNIX as a source of redirected
input. The only use of the batch mode version
will be to create output (text) files that can be
read by the user or scanned automatically to
detect rule violations. It is anticipated that this
version of SEQ_REVIEW will be used in highly
automated, Operations-type throughput-criti-
cal environments.

The figure on the next page shows our prelim-
inary design for a top-level menu of SEQ_RE-
VIEW that satisfies user-demanded qualities
and functions. When the user first activates
the program, only the top (highlighted) line of
each menu is visible; these lines form the
“Menu Bar” at the top of the SEQ_REVIEW
screen. The expanded menus shown in the
figure appear when the user clicks on the cor-
responding menu title in the Menu Bar.

THE DESIGN PHASE

The method used to design SEQ_REVIEW is
essentially the Class/Responsibility/Collabora-
tion (CRC) approach described by Wirfs-Brock
et al. (Ref. 3), with the following modifications/
adaptations:

(M1)the starting point of the design is the
SRD, which concentrates almost exclu-
sively on the user’s perspective of the
program. The requirements do not
address how the program is supposed
to accomplish the various tasks.

(M2)SEQ_REVIEW will rely on the MOTIF
toolkit for all graphics. Because MOTIF
has its own class definitions, there is
potential conflict with internal SEQ_RE-
VIEW classes. This problem is not really
discussed in Ref. 3.

(M3)a specific methodology was adopted
early on to deal with the fact that
SEQ_REVIEW needs to be delivered in
two flavors, GUI and batch. The decision
was that the two programs would share
the same object structure, and that
MOTIF, X Toolkit and X Window calls

934

Ope

DEFIN

. “ Un)Highli

8%" Eorr'reqat... Ngﬁhg%t qulor...

—ave Standard Rule... Previous
ave As... General Rule... Goto...

Print... State... Annotate
Close... Transition... Start(End) Learn
Exit Program... PTTES -
Last File 1 = (Un)Link Scrolling
Last File 2
Last File 3
Last File 4

would be “dummied up” in the batch ver-
sion.

(M4)we decided to use a fair amount of
“vertical inheritance” in our design, as
opposed to the Wirfs-Brock strategy
which emphasizes “horizontal inherit-
ance”.

The starting point of our design was an index
of keywords extracted from the SRD. The
index was then edited into a table of “SRD
objects”, to be used as a first step towards
designing the classes of SEQ_REVIEW.

As aresult of (M1), however, we found that the
SRD was not “rich enough” as a source of
objects when it came to describing the inner
workings of the program. In particular, it was
difficult to write scenarios that went beyond
the user interface. We then decided to use the
scenarios as a source of objects, rather than
as a means to check the validity of the design.

PLOT CONFIGURATION
Strips... Timeline... Build Form... File Format...
Formats... Graph... Mail Form... Screen...
Constraints... Observation... Open Form...

States... Close Form... Preferences...
Transitions... Time Conv....

Graphs...

Scripts... T

Programs... EL

Fig. 3: THE SEQ_REVIEW USER INTERFACE

This is of course dangerous, since many
design decisions could be made inadvertently
while writing scenarios. We avoided this prob-
lem by keeping the scenarios as simple,
“down to Earth” as possible and subjecting
them to frequent scrutiny.

After writing five or six scenarios and looking
at the objects that would be necessary to sup-
port them, it became clear that objects fell into
well-defined classes, and that these classes
should be organized into hierarchies using the
inheritance scheme. The resulting classes
provided our first “draft” of the design.

A “shell” program, featuring all these classes
but only some of their responsibilities, was
implemented in C++. This was done to vali-
date our design and to make sure that the C++
compiler would not object to our inheritance
scheme. We learned the following lessons:

935

- Our design is compatible with the C++
compilers we are using.

- Inheritance, which had been the focus of
our class-building effort, is only part of
the story. It became clear that classes
had a definite “personality” and that
classes with similar personalities should
be grouped in separate subsystems.

This naturally led to the next phase in the
design: organizing classes into subsystems.
The need for this was made more pressing by
the requirement phrased in (M2) and (M3)
above: we need a clear description of how
MOTIF is to be interfaced to the rest of the
system.

In the next step of the design, we built two
more prototypes. The first one was a refine-
ment of the earlier “shell”. Although this new
version was still only a shell, it was able to
print in indented, scenario-like style what it
was doing. It also provided a rudimentary user
interface which demonstrated how the menu
structure and the callback philosophy of the
GUI version could be brought into the batch
version of SEQ_REVIEW.

The second of these prototypes consisted of a
MOTIF implementation of the “Define Strip”
panel of the SEQ_REVIEW user interface.
This is probably the most complex graphic
object in the GUI. The prototype therefore
demonstrated the feasibility of our approach
and helped focus the discussion of how the
GUI and batch versions of SEQ_REVIEW
would coexist.

As a result of all this prototyping activity, we
gained the confidence necessary to organize
our preliminary classes into well-defined sub-
systems. We feel that our subsystem design is
robust enough that it will survive any last-
minute change to the class definitions, and we
therefore look at our subsystem descriptions
as the central part of our design.

CONCLUSION

SEQ_REVIEW is a tool that will facilitate the
task of reviewing the various text files associ-

ated with spacecraft sequences. The require-
ments for SEQ_REVIEW were derived from
interviews of potential customers. These inter-
views were converted into a requirements
document using the QFD approach. Require-
ments were then translated into a high-level
design using an object-oriented methodology.
The overall process was facilitated by the use
of numerous prototypes. Multi-mission
aspects were built into the requirements from
the start.

ACKNOWLEDGMENTS

We extend our thanks to our many colleagues
who contributed their time and insight, and in
particular to the flight team members who
helped phrase the requirements for SEQ_RE-
VIEW. Special thanks to Todd Bayer, Vickere
Blackwell, Carlos Carrion, Julia Henricks, Tim
Kaufman, Bob Kerr, Chuck Klose, Bill Nelson,
Brian Paczkowski, Steve Peters and Bruce
Waggoner for their thoughtful comments, and
to Jose Salcedo for sharing his knowledge of
the sequence generation process.

SEQ_REVIEW is currently under development
at the Jet Propulsion Laboratory, California
Institute of Technology, under contract to the
National Aeronautics and Space Administra-
tion.

REFERENCES

1. Salcedo, Jose, & Starbird, Thomas (1994,
Nov.). SEQ_GEN: A Comprehensive Multi-
mission Sequencing System, Space Ops
‘94 (These Proceedings).

2. ELBoushi, M., Zawacki, S., & Domb., E.
(1994, June). Towards Better Object Ori-
ented Software Designs With Quality
Function Deployment, Transactions from
The Sixth Symposium on Quality Function
Deployment, Novi, Michigan.

3. Wirfs-Brock, Rebecca, Wilkerson, Brian,
& Wiener, Lauren (1990). Designing
Object-Oriented Software, Prentice-Hall.

936

